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Skill Acquisition and Motor Memory in the Control

of Pointing Movements

Thomcrc schinsuerl, Danutn Prentki, Nicole Pledger,

Karl Theodor Knlaeram

For an easy task like moving the luminous spot of a laser-pointer across a

projection screen from one location to another, representations of visual

targets in extrapersonal space must be transformed into a kinesthetic refer-

ence frame (Lacquaniti, Caminiti 7998; Tillery, Flanders, Soechting 1991;

Soechting, Flanders 1989). Errors in this sensorimotor transformation can

result in a goal not being reached immediately or a dithering of the iaser-

spot around the target which may be traced back to visual information

(Adamovich, Berkinblit, Fookson, Poizner 1998)'

However, accepting the notion that the CNS controls the acceleration of

an actor's extremities plus any additional masses of a carried tool (e.g. laser-

pointer) in a time coordinated way in order to reach a precise destination on

a projection screen, it is essential that the CNS has a well established mem-

ory of the movement dynamics. This memory is known as an internal model

.f the task and consists of implicit and explicit knowledge of the physical

properties of the body and environment (Konczak, Jansen-Osmann, Kal-

veram 2003; Shadmehr, Holcomb 1,997; Shadmehr, Thoroughman 2000). If

one assumes that the desired output signal is the input which the CNS uses

to control motion, then the controller must essentially be an inverse of the

controlled system (Kaivera m 1992; Karniel 20A2; Shidara, Kawano, Comi,

Kawato lggg). The deviation of the actual from a desired sensory outcome

provides error values which might be functionally used to stabilize the
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plant's impedance along the trajectory (Burdet, Osu, Franklin, Milner, Ka-

ryato 2007; Kalveram, Schinauer, Beirle, Richter, Jansen-Osmann 2004; Har-

ris, Wolp ert 1998; Wolpert, Ghahramani, Jordan 7995)'

Most rapid goal directed movements can be considered to be highly

overlearned., and therefore to produce individually stereotvped velocity

profiles in their trajectory course (Wolpert, Ghahramani 2000). The learning

assumption, however, does not actually solve the motor control problem

which arises from the necessary translation from spatial to force units whilst

realizing a desired movement. Visual and kinesthetic information must be

merged with reference to an internal model of force control. We assume that

the merging of sensory information is based partial ly on the mechanisms of

oculo-motor control for funing the adjustable pattern generator (Cruse,

Dean, Heuer, Schmidt 1990; Houk, Buckingham, Barto 7996; Neggers, Bek-

kering 2001). Empirical support comes from animal studies which show that

fixation neurons in the superior colliculus encode the distance between cur-

rent and desirecl gaze positions (Bergeron, Guitton 2000). Furthermore, it has

recently been found that the internal online-monitoring of a reaching trajec-

tory follows parietal-cerebellar circuits, a fincting which supports both the

predictive capabil i ty of an inverse model and the essential i ty of kinesthetic

state feedback (Desmurget, Grea, Grete, Prablanc, Alexander, Crafton 2001).

Hypothetically, when a sensorimotor transformation does not need an in-

verse model of the task, isotonic and isometric muscle contractions should

not oniy be comparable intr insically ( lvanova, Garland, Mil ler 1997) but also

with regard to predictions of the sensory consequences in exteroceptive co-

ordinates.
Thus, leaving us with the question: Is it possible to learn and retain the

sensorimotor transformation without kinesthetic state feedback of the iimb -

a problem which may be highly relevant for rehabilitation purposes?

Method

Subjects
5 female and 5 male adults participated in the study. One femaie was left-

handed. subjects' uge ranged between 21 and 51 years (m = 36.2 sd = 8.3). All

parl.icipants gave written informed consent to take part in the study for



bv T. Schinauer et al. 187

n'hich ethical approval was granted by the appropriate committee of the

Hei nri ch-Heine-Universi ty.
Apparatus
Participants sat within a head-centred semi-circle projection screen (ra-

dius 1.5 m) and viewed two bright arrows projected onto the screen. A "tar'

get-arrow" specified the goal, and a "feedback-arrow" indicated the actual

angular position of the forearm in eye-centred coordinates in a reference

experiment (real movement). In an isometric experiment the "feedback-ar-

row" on the screen was controlled by the amount of pressure placed by the

fixed arm against a strain gauge. Force was integrated on-line in order to

produce a comparable speed of the "feedback-arrow" to the reference ex-

periment. Subjects' right forearm was inserted into an orthosis that was

driven by u torque motor allowing horizontal one-jointed flexion and exten-

sion movements from the start position of 90o-inclination relative to the up-

per arm. A damping coefficient of 0.5 Nm/rad/s was constantly administered

to make the subcutaneously perceivable pressure comparable within both

experiments. The arm was automatically returned to the start position after

each movement. The room was dimmed and the arm was blocked from

view.

Procedure

Prior to each movement trial the participants saw the goal, located at

28.65 degrees to the left or right of the mid-saggital. After 1.5 s an imperative

tone signaled movement onset. A block consisted of 40 trials, each of which

lasted 8 seconds. The movement experiment started with an oPen-loop pre-

test pointing block in which both arrows were cut from view when the arm

began to move (crit: Z degls). Open-loop pointing was meant to obtain a

baseline of visual-kinesthetic correspondence. A first learning block with

visual feedback was used to establish visual-kinesthetic correspondence. A

second learning block should lead to an individually consolidated torque

profile with regard to this correspondence. Using open loop pointing again

in a forth block, we measured the degree to which visual-kinesthetic corre-

spondence was retained. After a short break of about 10 min the subjects

began the isometric force control experiment in which the same ABBA-de-

sign was administered. Both experiments were run under two different vis-
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ual feedback learning condit ions, i ,e. "knowledge of results feedback" (KR)

in n,hich both the "target-arrow" and the "hand-arrow" reappeared after

movement end, versus "trajectory feedback" (AK) in which the "hand-ar-

row,, was visible over the entire tra;ectory course. The differerrt visual feed-

back conditions occurred on different days'

Data AnalYsis

Angular posit ion and torque data lvere f i l tered off l ine to remove noise,

\Vith regards to the consolidation of individual trajectories during the pro-

lorrged learning , d.ata of the second learning block were aggregated over

tr ials. The individual torque profi les were cotrsidered as being an optimal,

i .e, desired, profi le. This profi le was then subtracted from the data of each

open loop pointing trial by computing the difference along the entire trajec-

tory course in values of root mean square error (RMSE tN]). Thus, the indi-

vi,Cually transferred internal model to conditions of open loop pointing fol-

lowing the four dist inct learning situations was conlPared with a MANOVA

proceclu re (2x2x5 within subjects design): The factor "TASK" contained the

le'el , ,MOV" , i ,e. the real goal cl irected forearm movemeut and the level
"ISa", i .e. the "isometric pointing". The factor "VISFB" contained the levels

KR and AK, and in the S-level factor "SEQUENCE", the entire 40 tr ials were

consecutively aggregated in order to form 8 trials per sequence'
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Results

Little was learned within the skill acquisition phase of real goal directed

flexions and extensions because real movements with full kirresthetic state

feeclback naturally have a good pre-existent visual-kinesthetic corresPon-

dence.
Thus, a very strong task effect on retention shows the lack of a compara-

ble performance under condit ions of experimentally constrained kinesthetic

state feedback (F(1,9)=58,67, p<0.001) and real movement. The consolidated

individtral torqtre profi les from the second learning block were nearly re-

tained over the entire course of open-loop pointing with real movement,

i .dependent of the applied visual feedback. A comparable result in the iso-

pretric force control task was only realized when the ski l l  acquisit ion phase

contained "knOwledge Of results", i.e. when "target-" and "feedback-ar-

rows" were visible after movement end. This is expressed by a significant

second order interaction (F(4,36)=4.90, p<0.01). Thus, the dramatic forgett ing

of an internal control model can only be ascribed to force control learning in

which the entire movement trajectory was visible (F(4,36)=4'50, p<0.01)'

Discussion

The task effect clearlv shows that kinesthetic state feedback of a real

movement is necessary to retain an internal model of force control in an

optimal way. The visually performed external control of a plant (here "hand

arrow") suffers dramatic deteriorations of performance. With respect to its

task difficulty of constrained kinesthetic feedback, the sensorimotor trans-

formation can only be nearly learned. However, knowledge of results seems

to be an adequate training procedure in order to retain a highly reproductive

memory of force control, at least for the given time course of 40 trials. Al-

though an on-l ine vision (i .e. trajectory feedback) generally provides ad-

vantages regarding accuracy, even for very rapid movements (Elliot, Helson,

Chua 2001), an internal model of force control can be retained better when

the movement itself is not visible. The improved retention may be attributed

to a better focusing of attention onto the external target whilst learning

(Wulf, Shea, Park 2001). Trajectory feedback may entail current control of

movement (Elliot, Helson, Chua 2001) r,vhich may also impede memory con-

189
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solidation (Shadmehr, Holcomb \997) because attention must be distributed

along the entire trajectory course.

This idea is currently supported by the finding that a special kind of neu-

ron in the monkey superior colliculus, the visuomotor neuron, known to be

centrally involved in saccade preparation, is also important for covert shifts

of attention (Ignashchenkova, Dicke, Haarmeier, Thier 2004).
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